

Poule documentation

🐔 Poule helps you automate operations on GitHub issues and pull requests.

It allows implementing snippets of behavior (called operations) once and provides a way to invoke
them in three different contexts:

	As a one-time invocation, on the entire stock of GitHub items.

	As part of a batch job alongside multiple other operations.

	As part of a long-running daemon triggered by GitHub webhooks or scheduled.

The project was created to manage automation on the Moby project [https://github.com/moby/moby/].

Installation

Poule has not graduated to 1.0, so we don’t do binary releases yet. In the meantime:

	Use the pre-built image from Docker Hub [https://hub.docker.com/r/icecrime/poule/]: the
latest tag maps to the current state of the master branch, while individual tags exist for
pre-releases (e.g., 0.4.0).

docker pull icecrime/poule:latest

	Build from source using with no other dependency but Docker [https://www.docker.com].

docker build -t poule https://github.com/icecrime/poule.git

User guide

	Introduction
	Synopsis

	Global options

	Running operations

	Configuring execution

	Operations
	Definition

	Builtin operations

	Creating custom operations

	Server mode
	Main configuration

	Repository configuration

Examples

One-time operations

Use the label operation to add label bug to issues which title or body matches the strings
“panic” in repository icecrime/poule:

$ poule --repository icecrime/poule label --filter is:issue bug:panic

Use the random-assign operation to randomly assigns pull requests older than 2 weeks among 3
GitHub users in repository icecrime/poule:

$ poule --repository icecrime/poule random-assign --filter is:pr --filter age:2w user1 user2 user3

Batch mode

A batch on repository icecrime/poule which combines both of the operations described above,
and can together be executed in a single command.

$ cat poule-batch.yml
repository: icecrime/poule

operations:

 - type: random-assign
 filters:
 age: "2w"
 is: "pr"
 settings:
 users: ["user1", "user2", "user3"]

 - type: label
 filters:
 is: "issue"
 settings:
 patterns:
 bug: ["panic"]

$ poule batch poule-batch.yml

Server mode

A server configuration which listens on port 80 for incoming GitHub webhooks [https://developer.github.com/webhooks/].
It applies the label operation described above live as issues get edited, opened, or reopened.
It also randomly assigns pull requests older than 2 weeks on a daily basis.

$ cat poule-server.yml
http_listen: ":80"
http_secret: "S3CR3T"

repositories:
 icecrime/poule: ""

common_configuration:

 - triggers:
 issues: [edited, opened, reopened]
 operations:
 - type: label
 settings:
 patterns:
 bug: ["panic"]

 - schedule: "@daily"
 operations:
 - type: random-assign
 filters:
 age: "2w"
 is: "pr"
 settings:
 users: ["user1", "user2", "user3"]

$ poule serve --config poule-server.yml

Contributing

	Repository: https://github.com/icecrime/poule/

	Issue tracker: https://github.com/icecrime/poule/issues

Introduction

Synopsis

NAME:
 poule - Mass interact with GitHub issues & pull requests

USAGE:
 poule [global options] command [command options] [arguments...]

VERSION:
 0.4.0

COMMANDS:
 batch Run groups of commands described in files
 serve Operate as a daemon listening on GitHub webhooks
 validate Validate a Poule repository configuration file
 help, h Shows a list of commands or help for one command

 Operations:
 ci-label-clean Clean CI failure labels
 dco-check Check DCO on pull requests
 label Apply label(s) to items which title or body matches a pattern
 poule-updater Update the poule configuration for the specified repository
 prune Prune outdated issues
 random-assign Assign items to a random username from the `users` list.
 rebuild Rebuild configurations of a given state
 version-label Apply version labels to issues
 version-milestone Attach merged pull requests to the upcoming version's milestone

GLOBAL OPTIONS:
 --debug, -D enable debug logging
 --dry-run simulate operations
 --repository value GitHub repository
 --token value GitHub API token [$POULE_GITHUB_TOKEN]
 --token-file value GitHub API token file [$POULE_GITHUB_TOKEN_FILE]
 --help, -h show help
 --version, -v print the version

Global options

Specifying a GitHub API token

A GitHub API token must be provided for poule to execute any modifying action (such as labeling an
issue, or closing a pull request). The token can be specified:

	Directly by providing its value through the --token flag or the $POULE_GITHUB_TOKEN
environment variable.

	Indirectly by providing the path to a file containing a token through the --token-file flag
or the $POULE_GITHUB_TOKEN_FILE environment variable.

Simulating execution

When --dry-run is specified, poule retrieves GitHub issues and pull requests and calls
operations as it normally would but doesn’t actually apply the operations. Each operation will log
as it is called, and what it would have done if applied.

Keep in mind that poule in dry run still issues the API calls necessary to retrieve GitHub data, and
as a result contributes to consuming the GitHub’s user API limit.

Running operations

Poule is all about running Operations on GitHub issues and pull requests. An operation is a
snippet of GitHub automation, such as adding a label to items which body matches a given string.
Once implemented, an operation can be reused in different contexts:

	As a one-time invocation, on the entire stock of GitHub items.

	As part of a batch job alongside multiple other operations.

	As part of a long-running daemon triggered by GitHub webhooks or scheduled.

One-time invocation

Each operation gets surfaced in the command-line as its own subcommand, making the invocation of a
one-off operation straightforward. All operations subcommand support the --filter flag which
allows to restrict the items on which the operation will be applied. Additionally, each operation
defines its own set of flags and its own input format: refer to the --help output for
operation-specific information.

Batch execution

In batch execution, a collection of operations is described in YAML [http://yaml.org/] format.
Similarly to the command-line invocation, each operation can be associated with a set of filters, as
well as operation-specific settings.

Server mode

This is of course the most interesting mode, and deserves as such an entire documentation page:
Server mode.

Configuring execution

Filtering

The following filter types are supported to restrict the set of items on which a given operation
should be applied:

	Type

	Passes if

	Values

	age

	Creation date > value

	E.g.,: 2d, 3w, 4m, 1Y

	assigned

	Issue is assigned == value

	true or false

	comments

	# comments matches predicate

	E.g.,: "=0", ">10", "<20"

	labels

	All specified labels are set

	E.g.,: "label1,label2"

	~labels

	None of the specified labels are set

	E.g.,: "label1,label2"

	is

	Type of item == value

	pr or issues

All operations subcommands support the --filter with the following format:

--filter <filter_type_1>:<filter_value_1> [--filter <filter_type_n>:<filter_value_n> ...]

When describing operation in YAML format (either for batch or server mode), filtering is defined as
a filters mapping filter types to their respective values:

filters:
 <filter_type_1>: <filter_value_1>
 <filter_type_n>: <filter_value_n>

Note that sequences are used instead of comma separated values for the labels and ~labels
filters, for example:

--filter is:issue --filter label:bug --filter age:2d

Is expressed in YAML as the following:

filters:
 age: 2d
 is: issue
 label: [bug]

Operations

Definition

An operation is a snippet of GitHub automation, for example: adding a label, closing a pull request,
or commenting on an issue.

	Operations are idempotent, which means that they can safely be applied multiple times.

	An operation can apply to GitHub issues, pull requests, or both. For example, a label
operation may know to operate independently on issues and pull requests, while a rebuild
operation which triggers CI may only apply on pull requests.

	A catalog of builtin operations is provided and documented.

Builtin operations

	Operation

	Docker specific

	Issues

	Pull Requests

	Purpose

	ci-label-clean

	
	
	☑

	Remove CI failures labels where necessary.

	dco-check

	🐳.

	
	☑

	Check for commit signatures, label and post a comment if missing.

	label

	
	☑

	☑

	Auto-label issues and pull requests according on matching regexps.

	poule-updater

	
	
	☑

	Reload poule configuration when a pull request modifies it.

	prune

	
	☑

	
	Manage issues with no activities.

	random-assign

	
	☑

	☑

	Auto-assign a random user to issues and pull requests.

	rebuild

	🐳

	
	☑

	Rebuild all or selected pull request jobs.

	version-label

	🐳

	☑

	
	Add a version/x label based on Docker version string in the body.

	version-milestone

	~

	
	☑

	Add merged pull requests to the upcoming milestone.

More details on each operation can be found on GitHub [https://github.com/icecrime/poule/blob/master/src/poule/operations/catalog/README.md].

Creating custom operations

Creating custom operations is not yet supported and requires modifying the project. However, issue
icecrime/poule#4 [https://github.com/icecrime/poule/issues/4] is about adding support for Golang
1.8 plugins in such way that custom operations can be added at runtime.

Server mode

Main configuration

Listening for events

Using GitHub webhooks

Poule can listen on HTTP for incoming GitHub webhooks. Under this mode, the repository’s webhook
settings in GitHub must point to the publicly accessible URL of a poule server instance.

The following configuration elements are required:

	The http_listen address.

	The http_secret value which must correspond to the secret value specified in the repository
configuration on GitHub.

Example configuration:

http_listen: ":80"
http_secret: "S3CR3T"

repositories:
 icecrime/poule: ""

Using NSQ

NSQ [http://nsq.io/] is a “realtime distributed messaging platform” which, in combination with
crosbymichael/hooks [https://github.com/crosbymichael/hooks], can be used to distribute GitHub
events. Relying on a message queue for this use case has several advantages:

	Messages are persisted: events will be queued when poule is offline and will catch-up as soon as
it gets back online.

	A single webhook endpoint in the repository’s settings in GitHub can fan out messages to a
variety of listeners through the messaging infrastructure.

Configuring poule to listens on NSQ requires several configuration elements:

	The nsq_lookupd address.

	The nsq_channel to subscribe to.

	For each repository, the queue name to monitor.

Example configuration:

nsq_channel: "poule"
nsq_lookupd: "127.0.0.1:4161"

repositories:
 icecrime/poule: "hooks-poule"

Repository configuration

The server-mode configuration can contain both infrastructure-level settings (such as the NSQ
configuration) and operations. However, having the entire configuration in a single file is
impratical when managing a large collection of repositories.

In server mode, poule will look for a special poule.yml file at the root of each configured
repository and load it as repository-specific configuration. This allows each individual repository
and group of maintainers to manage their own set of rules. Furthermore, this allows to keep the
central configuration private as it typically contains secret information.

Monitoring for updates

Repository-specific configurations will be loaded at poule startup. However, poule also provides a
builtin poule-updater operation which looks for merged pull requests which either modify or add
the special poule.yml file at the root of the repository.

When configured to be triggered on a pull request closed event, the operation will auto-refresh the
configuration settings for the repository without having to restart the server. One possibily is to
add this operation in the main configuration, hence covering all repositories:

common_configuration:

 # Poule updater watches for merged pull requests which modify the `poule.yml` file at the root
 # of the repository, and takes these changes into account live.
 - triggers:
 pull_request: [closed]
 operations:
 - type: poule-updater

Index

 nav.xhtml

 Table of Contents

 		
 Poule documentation

 		
 Introduction

 		
 Synopsis

 		
 Global options

 		
 Specifying a GitHub API token

 		
 Simulating execution

 		
 Running operations

 		
 One-time invocation

 		
 Batch execution

 		
 Server mode

 		
 Configuring execution

 		
 Filtering

 		
 Operations

 		
 Definition

 		
 Builtin operations

 		
 Creating custom operations

 		
 Server mode

 		
 Main configuration

 		
 Listening for events

 		
 Repository configuration

 		
 Monitoring for updates

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

