
poule Documentation
Release 0.4.0

Arnaud Porterie (icecrime)

Jan 03, 2019





Contents

1 Installation 3

2 User guide 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Server mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Examples 11
3.1 One-time operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Batch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Server mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Contributing 13

i



ii



poule Documentation, Release 0.4.0

Poule helps you automate operations on GitHub issues and pull requests.

It allows implementing snippets of behavior (called operations) once and provides a way to invoke them in three
different contexts:

1. As a one-time invocation, on the entire stock of GitHub items.

2. As part of a batch job alongside multiple other operations.

3. As part of a long-running daemon triggered by GitHub webhooks or scheduled.

The project was created to manage automation on the Moby project.

Contents 1

https://github.com/moby/moby/


poule Documentation, Release 0.4.0

2 Contents



CHAPTER 1

Installation

Poule has not graduated to 1.0, so we don’t do binary releases yet. In the meantime:

• Use the pre-built image from Docker Hub: the latest tag maps to the current state of the master branch,
while individual tags exist for pre-releases (e.g., 0.4.0).

docker pull icecrime/poule:latest

• Build from source using with no other dependency but Docker.

docker build -t poule https://github.com/icecrime/poule.git

3

https://hub.docker.com/r/icecrime/poule/
https://www.docker.com


poule Documentation, Release 0.4.0

4 Chapter 1. Installation



CHAPTER 2

User guide

2.1 Introduction

2.1.1 Synopsis

NAME:
poule - Mass interact with GitHub issues & pull requests

USAGE:
poule [global options] command [command options] [arguments...]

VERSION:
0.4.0

COMMANDS:
batch Run groups of commands described in files
serve Operate as a daemon listening on GitHub webhooks
validate Validate a Poule repository configuration file
help, h Shows a list of commands or help for one command

Operations:
ci-label-clean Clean CI failure labels
dco-check Check DCO on pull requests
label Apply label(s) to items which title or body matches a pattern
poule-updater Update the poule configuration for the specified repository
prune Prune outdated issues
random-assign Assign items to a random username from the `users` list.
rebuild Rebuild configurations of a given state
version-label Apply version labels to issues
version-milestone Attach merged pull requests to the upcoming version's

→˓milestone

GLOBAL OPTIONS:

(continues on next page)

5



poule Documentation, Release 0.4.0

(continued from previous page)

--debug, -D enable debug logging
--dry-run simulate operations
--repository value GitHub repository
--token value GitHub API token [$POULE_GITHUB_TOKEN]
--token-file value GitHub API token file [$POULE_GITHUB_TOKEN_FILE]
--help, -h show help
--version, -v print the version

2.1.2 Global options

Specifying a GitHub API token

A GitHub API token must be provided for poule to execute any modifying action (such as labeling an issue, or closing
a pull request). The token can be specified:

• Directly by providing its value through the --token flag or the $POULE_GITHUB_TOKEN environment
variable.

• Indirectly by providing the path to a file containing a token through the --token-file flag or the
$POULE_GITHUB_TOKEN_FILE environment variable.

Simulating execution

When --dry-run is specified, poule retrieves GitHub issues and pull requests and calls operations as it normally
would but doesn’t actually apply the operations. Each operation will log as it is called, and what it would have done if
applied.

Keep in mind that poule in dry run still issues the API calls necessary to retrieve GitHub data, and as a result contributes
to consuming the GitHub’s user API limit.

2.1.3 Running operations

Poule is all about running Operations on GitHub issues and pull requests. An operation is a snippet of GitHub
automation, such as adding a label to items which body matches a given string. Once implemented, an operation can
be reused in different contexts:

1. As a one-time invocation, on the entire stock of GitHub items.

2. As part of a batch job alongside multiple other operations.

3. As part of a long-running daemon triggered by GitHub webhooks or scheduled.

One-time invocation

Each operation gets surfaced in the command-line as its own subcommand, making the invocation of a one-off oper-
ation straightforward. All operations subcommand support the --filter flag which allows to restrict the items on
which the operation will be applied. Additionally, each operation defines its own set of flags and its own input format:
refer to the --help output for operation-specific information.

6 Chapter 2. User guide



poule Documentation, Release 0.4.0

Batch execution

In batch execution, a collection of operations is described in YAML format. Similarly to the command-line invocation,
each operation can be associated with a set of filters, as well as operation-specific settings.

Server mode

This is of course the most interesting mode, and deserves as such an entire documentation page: Server mode.

2.1.4 Configuring execution

Filtering

The following filter types are supported to restrict the set of items on which a given operation should be applied:

Type Passes if Values
age Creation date > value E.g.,: 2d, 3w, 4m, 1Y
assigned Issue is assigned == value true or false
comments # comments matches predicate E.g.,: "=0", ">10", "<20"
labels All specified labels are set E.g.,: "label1,label2"
~labels None of the specified labels are set E.g.,: "label1,label2"
is Type of item == value pr or issues

All operations subcommands support the --filter with the following format:

--filter <filter_type_1>:<filter_value_1> [--filter <filter_type_n>:<filter_value_n> .
→˓..]

When describing operation in YAML format (either for batch or server mode), filtering is defined as a filters
mapping filter types to their respective values:

filters:
<filter_type_1>: <filter_value_1>
<filter_type_n>: <filter_value_n>

Note that sequences are used instead of comma separated values for the labels and ~labels filters, for example:

--filter is:issue --filter label:bug --filter age:2d

Is expressed in YAML as the following:

filters:
age: 2d
is: issue
label: [ bug ]

2.1. Introduction 7

http://yaml.org/


poule Documentation, Release 0.4.0

2.2 Operations

2.2.1 Definition

An operation is a snippet of GitHub automation, for example: adding a label, closing a pull request, or commenting
on an issue.

• Operations are idempotent, which means that they can safely be applied multiple times.

• An operation can apply to GitHub issues, pull requests, or both. For example, a label operation may know
to operate independently on issues and pull requests, while a rebuild operation which triggers CI may only
apply on pull requests.

• A catalog of builtin operations is provided and documented.

2.2.2 Builtin operations

Operation Docker
specific

Is-
sues

Pull Re-
quests

Purpose

ci-label-clean Remove CI failures labels where necessary.
dco-check . Check for commit signatures, label and post a com-

ment if missing.
label Auto-label issues and pull requests according on

matching regexps.
poule-updater Reload poule configuration when a pull request

modifies it.
prune Manage issues with no activities.
random-assign Auto-assign a random user to issues and pull re-

quests.
rebuild Rebuild all or selected pull request jobs.
version-label Add a version/x label based on Docker version

string in the body.
version-milestone~ Add merged pull requests to the upcoming milestone.

More details on each operation can be found on GitHub.

2.2.3 Creating custom operations

Creating custom operations is not yet supported and requires modifying the project. However, issue icecrime/poule#4
is about adding support for Golang 1.8 plugins in such way that custom operations can be added at runtime.

8 Chapter 2. User guide

https://github.com/icecrime/poule/blob/master/src/poule/operations/catalog/README.md
https://github.com/icecrime/poule/issues/4


poule Documentation, Release 0.4.0

2.3 Server mode

2.3.1 Main configuration

Listening for events

Using GitHub webhooks

Poule can listen on HTTP for incoming GitHub webhooks. Under this mode, the repository’s webhook settings in
GitHub must point to the publicly accessible URL of a poule server instance.

The following configuration elements are required:

• The http_listen address.

• The http_secret value which must correspond to the secret value specified in the repository configuration
on GitHub.

Example configuration:

http_listen: ":80"
http_secret: "S3CR3T"

repositories:
icecrime/poule: ""

Using NSQ

NSQ is a “realtime distributed messaging platform” which, in combination with crosbymichael/hooks, can be used to
distribute GitHub events. Relying on a message queue for this use case has several advantages:

• Messages are persisted: events will be queued when poule is offline and will catch-up as soon as it gets back
online.

• A single webhook endpoint in the repository’s settings in GitHub can fan out messages to a variety of listeners
through the messaging infrastructure.

Configuring poule to listens on NSQ requires several configuration elements:

1. The nsq_lookupd address.

2. The nsq_channel to subscribe to.

3. For each repository, the queue name to monitor.

Example configuration:

nsq_channel: "poule"
nsq_lookupd: "127.0.0.1:4161"

repositories:
icecrime/poule: "hooks-poule"

2.3. Server mode 9

http://nsq.io/
https://github.com/crosbymichael/hooks


poule Documentation, Release 0.4.0

2.3.2 Repository configuration

The server-mode configuration can contain both infrastructure-level settings (such as the NSQ configuration) and
operations. However, having the entire configuration in a single file is impratical when managing a large collection of
repositories.

In server mode, poule will look for a special poule.yml file at the root of each configured repository and load
it as repository-specific configuration. This allows each individual repository and group of maintainers to manage
their own set of rules. Furthermore, this allows to keep the central configuration private as it typically contains secret
information.

Monitoring for updates

Repository-specific configurations will be loaded at poule startup. However, poule also provides a builtin
poule-updater operation which looks for merged pull requests which either modify or add the special poule.
yml file at the root of the repository.

When configured to be triggered on a pull request closed event, the operation will auto-refresh the configuration
settings for the repository without having to restart the server. One possibily is to add this operation in the main
configuration, hence covering all repositories:

common_configuration:

# Poule updater watches for merged pull requests which modify the `poule.yml` file
→˓at the root
# of the repository, and takes these changes into account live.
- triggers:

pull_request: [ closed ]
operations:

- type: poule-updater

10 Chapter 2. User guide



CHAPTER 3

Examples

3.1 One-time operations

Use the label operation to add label bug to issues which title or body matches the strings “panic” in repository
icecrime/poule:

$ poule --repository icecrime/poule label --filter is:issue bug:panic

Use the random-assign operation to randomly assigns pull requests older than 2 weeks among 3 GitHub users in
repository icecrime/poule:

$ poule --repository icecrime/poule random-assign --filter is:pr --filter age:2w
→˓user1 user2 user3

3.2 Batch mode

A batch on repository icecrime/poule which combines both of the operations described above, and can together
be executed in a single command.

$ cat poule-batch.yml
repository: icecrime/poule

operations:

- type: random-assign
filters:

age: "2w"
is: "pr"

settings:
users: [ "user1", "user2", "user3" ]

(continues on next page)

11



poule Documentation, Release 0.4.0

(continued from previous page)

- type: label
filters:

is: "issue"
settings:

patterns:
bug: [ "panic" ]

$ poule batch poule-batch.yml

3.3 Server mode

A server configuration which listens on port 80 for incoming GitHub webhooks. It applies the label operation
described above live as issues get edited, opened, or reopened. It also randomly assigns pull requests older than 2
weeks on a daily basis.

$ cat poule-server.yml
http_listen: ":80"
http_secret: "S3CR3T"

repositories:
icecrime/poule: ""

common_configuration:

- triggers:
issues: [ edited, opened, reopened ]

operations:
- type: label

settings:
patterns:
bug: [ "panic" ]

- schedule: "@daily"
operations:

- type: random-assign
filters:
age: "2w"
is: "pr"

settings:
users: [ "user1", "user2", "user3" ]

$ poule serve --config poule-server.yml

12 Chapter 3. Examples

https://developer.github.com/webhooks/


CHAPTER 4

Contributing

• Repository: https://github.com/icecrime/poule/

• Issue tracker: https://github.com/icecrime/poule/issues

13

https://github.com/icecrime/poule/
https://github.com/icecrime/poule/issues

	Installation
	User guide
	Introduction
	Operations
	Server mode

	Examples
	One-time operations
	Batch mode
	Server mode

	Contributing

